The City of Cheyenne Board of Public Utilities (BOPU) is proud to release the Consumer Confidence Report for Annual Drinking Water Quality, for calendar year 2015. If you have any questions about this report, call Water Treatment Laboratory Supervisor, Ron Kailey at 307.635.7693.

Consumer Confidence Report for Annual Drinking Water Quality

Section 1. Findings: We report that the BOPU drinking water is safe and meets or exceeds federal and local requirements.

Section 2. About Our Water Supply: The BOPU receives both surface water and groundwater. Surface water is collected from the Douglas Creek Drainage, located in the Snowy Range Mountains, about 75 miles west of Cheyenne. The water is stored in Rob Roy Reservoir and transported to Granite and Crystal Reservoirs via two water delivery pipelines. Surface water is also collected from the Crow Creek Drainage, located in the Pole Mountain/Vedauwoo area, about 30 miles west of Cheyenne. Crow Creek water is collected and stored in North Crow Reservoir (North Crow Creek Drainage), in Granite and Crystal Reservoirs (Middle Crow Creek Drainage) and South Crow Reservoir (South Crow Creek Drainage). Water is delivered from these reservoirs to the R.L. Sherard water treatment plant by pipelines. The City owns and operates about 35 groundwater wells located west and northwest of Cheyenne. The wells pump from the Ogallala and White River Aquifers. Cheyenne also collects surface water in the Little Snake River Drainage (LSRD). The LSRD is located about 110 miles west of Cheyenne on the western slope of the Continental Divide. This water is transported through a tunnel and stored in Hog Park Reservoir located on the eastern slope of the Divide. Water released from Hog Park Reservoir is traded for surface water from the Douglas Creek Drainage. As water is released from Hog Park Reservoir, Cheyenne is allowed to collect water from the Douglas Creek Drainage and store the water in Rob Roy Reservoir for use in the drinking water system.

A Source Water Assessment and Protection (SWAP) report was completed in 2004. To view a copy of this report, call 307.637.0460.

Section 3. Monitoring: The BOPU's Water Treatment Division routinely monitors for potential contaminants in the drinking water according to Federal laws. The table in Section 13 shows the most recent results of our monitoring (through 12/31/15), completed in accordance with US EPA Drinking Water Regulations.

Section 4. Definitions: In this table you will find many terms and abbreviations which might not be familiar. To help you better understand these terms, we've provided the following definitions:

**Action Level (AL)** - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

**Maximum Contaminant Level (MCL)** - The “Maximum Allowed” is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

**Maximum Contaminant Level Goal (MCLG)** - The “Goal” is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

**Nephelometric Turbidity Unit (NTU)** - Nephelometric Turbidity Unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is expected risk to health. MCLGs allow for a margin of safety.

**Treatment Technique (TT)** - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

**Section 5. No Violations: A detect but no violation:** As you can see by the table, our system had no violations. We’re proud that the drinking water provided by the BOPU water system meets or exceeds all Federal requirements. We have learned through monitoring and testing that some constituents have been detected. The EPA has determined that Cheyenne’s water is SAFE at these levels.

**Section 6. The sources of drinking water:** (both tap water & bottled water) include rivers, streams, lakes, reservoirs, ponds, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive and/or naturally occurring radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. (C) Pesticides and herbicides, which may come from a variety of sources such as agricultural, urban storm water runoff, and residential uses. (D) Organic chemical contaminants, including synthetic and volatile organic chemicals which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order for water to be safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800-426-4791).

**Section 7. Maximum Contaminant Level (MCL) values:** set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. (Source: (c) reprinted with permission from the National Rural Water Association.)

**Section 8. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have had organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

**Section 9. If present, elevated levels of lead can cause serious health problems for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The BOPU is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When
Section 13. Table Referencing Contaminant Detects and/or Violations

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Yes/No</th>
<th>Level Detected</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total Coliform Bacteria</strong></td>
<td>No</td>
<td>Presence/Absence Testing</td>
<td>0</td>
<td>Presence of coliform bacteria in &gt;5% of samples.</td>
<td>Naturally present in the environment.</td>
<td></td>
</tr>
<tr>
<td><strong>Turbidity</strong></td>
<td>No</td>
<td>0.12 NTU</td>
<td>N/A</td>
<td>TT</td>
<td>95% &lt; 0.3</td>
<td>Soil runoff. Maximum allowable filtered water turbidity is 0.5 NTU in 95% of all samples. Soils are filtered in operation and values reported monthly to the EPA.</td>
</tr>
<tr>
<td><strong>Lead – 90th percentile</strong></td>
<td>No</td>
<td>6.2 ppb</td>
<td>0</td>
<td>AL=15</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits. This sample was taken from a private residence on the system.</td>
<td></td>
</tr>
<tr>
<td><strong>Fluoride</strong></td>
<td>No</td>
<td>R: 0.6 S: 0.6 ppm</td>
<td>4</td>
<td>Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Nitrate (as Nitrogen)</strong></td>
<td>No</td>
<td>R: 0.6 S: 0.6 ppm</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TTHM Total Trihalomethanes</strong></td>
<td>No</td>
<td>R: Min: 33.2 Max: 42.6 Av: 39.7 S: Min: 19.2 Max: 36.7 Avg: 33</td>
<td>ppm</td>
<td>0</td>
<td>1.3 AL=1.3</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td><strong>HAAs Halocetic Acids</strong></td>
<td>No</td>
<td>R: Min: 25 Max: 33 Av: 29</td>
<td>ppm</td>
<td>0</td>
<td>60</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td><strong>Radioisotopes</strong></td>
<td>No</td>
<td>R: 4.1±1.7 S: 0.4±0.1</td>
<td>pCi/L</td>
<td>None</td>
<td>15</td>
<td>Uranium — Naturally present in the environment.</td>
</tr>
<tr>
<td><strong>Radon</strong></td>
<td>No</td>
<td>R: 4.1±1.7 S: 0.4±0.1</td>
<td>pCi/L</td>
<td>None</td>
<td>15</td>
<td>Radon 226 and 228 — Erosion of natural deposits.</td>
</tr>
<tr>
<td><strong>Uranium</strong></td>
<td>No</td>
<td>R: 4.1±0.5 S: 0.2±0.0</td>
<td>pCi/L</td>
<td>None</td>
<td>15</td>
<td>Uranium — Naturally present in the environment.</td>
</tr>
<tr>
<td><strong>TOC</strong></td>
<td>No</td>
<td>TOC Raw Max: 5.3 TOC Finished Min: 2.73</td>
<td>ppm</td>
<td>N/A</td>
<td>TT</td>
<td>Total Organic Carbon is the measure of organic matter associated with the water source.</td>
</tr>
<tr>
<td><strong>Barium</strong></td>
<td>No</td>
<td>R: 0.04 S: 0.04</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; erosion of natural deposits.</td>
</tr>
<tr>
<td><strong>Sulfate</strong></td>
<td>No</td>
<td>R: 22 S: 22</td>
<td>ppm</td>
<td>None</td>
<td>250</td>
<td>Used as a coagulation compound in the treatment of drinking water. Water additive — Ferric Sulfate.</td>
</tr>
</tbody>
</table>

Additionally, the BOPU tested the drinking water for the following contaminants, and found no detects:

**INORGANIC CONTAMINANTS**

- Arsenic, Antimony, Beryllium, Bromate, Cadmium, Chromium, Cyanide, Mercury, Nickel, Nitrite, Selenium, Thallium

**SYNTHETIC ORGANIC CONTAMINANTS INCLUDING PESTICIDES AND HERBICIDES**

- 2,4-D, 2,3,5-T (Dichloroacetic Acid, Dichloroacetic Acid, Dichloroacetic Acid)

**VOLATILE ORGANIC CONTAMINANTS**

- Benzene, Carbon Tetrachloride, Chloromethane, 1,1-Dichloroethane, 1,1-Dichloroethylene, cis-1,2-Dichloroethylene, trans-1,2-Dichloroethylene, Ethylbenzene, Styrene, 1,2,4-Trichlorobenzene, 1,1,1-Trichloroethane, Toluene, Vinyl Chloride, Xylene, Methylene Chloride, Dichloromethane, Trimethylbenzene, Tetrachloroethylene

**UNREGULATED CONTAMINANTS**

- Acetochlor, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 4,4-DDE, DCP Acid Metabolites, EPTC, Molate, Nitrobenzene, Terhalic, Perchlorate